Silica coating influences the corona and biokinetics of cerium oxide nanoparticles
نویسندگان
چکیده
Background: The physicochemical properties of nanoparticles (NPs) influence their biological outcomes. Methods: We assessed the effects of an amorphous silica coating on the pharmacokinetics and pulmonary effects of CeO2 NPs following intratracheal (IT) instillation, gavage and intravenous injection in rats. Uncoated and silica-coated CeO2 NPs were generated by flame spray pyrolysis and later neutron-activated. These radioactive NPs were IT-instilled, gavaged, or intravenously (IV) injected in rats. Animals were analyzed over 28 days post-IT, 7 days post-gavage and 2 days post-injection. Results: Our data indicate that silica coating caused more but transient lung inflammation compared to uncoated CeO2. The transient inflammation of silica-coated CeO2 was accompanied by its enhanced clearance. Then, from 7 to 28 days, clearance was similar although significantly more Ce from silica-coated (35 %) was cleared than from uncoated (19 %) CeO2 in 28 days. The protein coronas of the two NPs were significantly different when they were incubated with alveolar lining fluid. Despite more rapid clearance from the lungs, the extrapulmonary Ce from silica-coated CeO2 was still minimal (<1 %) although lower than from uncoated CeO2 NPs. Post-gavage, nearly 100 % of both NPs were excreted in the feces consistent with very low gut absorption. Both IV-injected CeO2 NP types were primarily retained in the liver and spleen. The silica coating significantly altered the plasma protein corona composition and enhanced retention of Ce in other organs except the liver. Conclusion: We conclude that silica coating of nanoceria alters the biodistribution of cerium likely due to modifications in protein corona formation after IT and IV administration.
منابع مشابه
Evaluation of protein corona formation and anticancer efficiency of curcumin-loaded zwitterionic silica nanoparticles
Objective(s): Study and development of antifouling nanosystem for conjugation of drugs were attracting great attention in recent years. The present study aimed to develop novel curcumin-loaded silica nanoparticles containing zwitterionic coating as an antifouling system to provide protein corona free nanoformulations for curcumin. Materials and Methods: Silica nanoparticles were prepared ...
متن کاملEffects of Surface Chemistry Modification using Zwitterionic Coatings on the Surface of Silica Nanoparticles on Prevention of Protein Corona: A Test Study
Objective(s): The purpose of this study was investigation of the protein corona formation on the surface of zwitterionic nanoparticles when they exposed to bio-fluid like human plasma.Methods: Silica nanoparticles with zwitterionic surface coating, cysteine and sulfobetaine were employed as zwitterionic ligands, were synthesized and characterized in terms of physicochemical properties. To...
متن کاملEvaluation of Antioxidant and cytotoxic Effects of Cinnamon-Coated Cerium Oxide Nanoparticles on PC12 Cell Line
Background & objectives: Research on intelligent nanomaterials that accelerate the process of nerve regeneration and treatment by different methods such as antioxidant effects, stimulation of nerve cell proliferation, modulation of the immune system and inflammatory factors is great importance. The aim of this study was to prepare cinnamon-coated cerium oxide nanoparticles and evaluate its anti...
متن کاملStability and adsorption properties of electrostatic complexes: design of hybrid nanostructures for coating applications.
We report the presence of a correlation between the bulk and interfacial properties of electrostatic coacervate complexes. Complexes were obtained by co-assembly between cationic-neutral diblocks and oppositely charged surfactant micelles or 7 nm cerium oxide nanoparticles. Light scattering and reflectometry measurements revealed that the hybrid nanoparticle aggregates were more stable through ...
متن کاملTransport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions
This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca2+ and Mg2+) were more than 31...
متن کامل